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The radical radn of an integer n 6= 0 is the product of the

primes dividing n. The abc-conjecture and the Szpiro conjec-

ture imply that, for any positive relatively prime integers a, b,
and c such that a+ b = c, the expressionslog clog rad(abc) and

log abclog rad(abc)
are bounded. We give an algorithm for finding triples (a; b; c)
for which these ratios are high with respect to their conjectured

asymptotic values. The algorithm is based on approximation

methods for solving the equationAxn�Byn = Cz in integersx, y, and z with small jzj.
Additionally, we employ these triples to obtain semistable el-

liptic curves over Q with high Szpiro ratio� = log j�jlogN ;
where � is the discriminant and N is the conductor.

1. INTRODUCTIONAn abc-example is a triple (a; b; c) of positive rel-atively prime integers such that a + b = c anda < b. The abc-conjecture of Masser and Oesterl�e[Oesterl�e 1988] implies that the expression
� = �(a; b; c) = log clog rad(abc) (1.1)

is bounded, where rad(abc) is the radical of abc(the product of all distinct primes dividing abc).The conjectured asymptotic value of �(a; b; c) is 1,so the more � exceeds 1, the more an abc-exampleis interesting from the point of view of the abc-conjecture.
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Let E be a semistable elliptic curve over Q withminimal discriminant � and conductor N . Theoriginal Szpiro conjecture says that, for any " > 0,there exists c(") such thatj�j � c(")N 6+":This inequality implies that the Szpiro ratio� = log j�jlogN (1.2)is bounded. Applied to the elliptic curve given byy2 + xy = x3 + b� a� 14 x2 � ab16x;where a and b are relatively prime integers witha � �1 mod 4 and b � 0 mod 16, the Szpiroconjecture implies that the ratio� = �(a; b; c) = log jabcjlog rad(abc) (1.3)is bounded [Oesterl�e 1988], where c = a + b. Theconjectured asymptotic value of �(a; b; c) is 3; themore � exceeds 3, the more an abc-example is in-teresting from this point of view.This paper gives an algorithm that yields manyabc-examples with high � or �. Section 2 moti-vates the algorithm, Section 3 gives it in its sim-plest form, and Sections 4 and 5 indicate how tomake it more e�cient.Section 6 describes our experiments, which con-sisted in running the algorithm for various set-tings of the bounds and collecting the resultingabc-examples with � � 1:4 or � � 3:8. Note that,while the algorithm does not allow an exhaustivesearch for c in a given range, it can, with relativeease, �nd examples with c quite large. The largestone we have found is1093 23833 + 250 72 17 19 31 = 317 536 193;with � = 1:37839 and � = 3:83622, for which c >269.Section 7 is an application of the abc-examplesto the construction of two families of elliptic curveswith high Szpiro ratio.

2. ON A DIOPHANTINE EQUATIONLet n � 2 be an integer, and let A, B, C be rel-atively prime integers with A;C > 0 and B 6= 0.Our search for good abc-examples will be based onthe study of the diophantine equationAxn �Byn = Cz; (2.1)where we require that gcd(y; C) = 1. (Note thatthis implies x 6= 0.) This equation has a solutionsatisfying this condition if and only if the congru-ence Atn � B mod C (2.2)can be solved for t. Indeed, saying that Atn � Bdivides C is saying that (x; y; z) = (t; 1; z) is asolution of (2.1) for some integer z. Conversely, ifAxn � Byn mod C and gcd(C; y) = 1, any integerrepresentative t of xy�1 mod C satis�es (2.2). Inthis case we can also write x = ty � Cu, for someinteger u.We will be primarily interested in �nding solu-tions of (2.1) such that jzj = 1. We distinguish twocases, depending on the values of B and n.
Theorem 2.1. Suppose B < 0 and n even. If (x; y; 1)is a solution of (2.1) with y > 0 and gcd(C; y) = 1,there exists a solution t of (2.2) with 0 � t < Cand such that u=y is a convergent of t=C, where uis de�ned by x = ty � Cu.
Proof. The only thing we have not shown is that u=yis a convergent of t=C (recall that this means thatno other integer fraction with denominator � y iscloser to t=C). Since A > 0 and B < 0, we have2 jxj y < x2 + y2 � xn + yn � Axn �Byn = c:This implies that

pt��� tC � uy ��� = jxjCy < 12y2 ;from which the desired result follows easily (see,for example, [Niven et al. 1991]). �
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To treat the complementary case, we set� = �BA�1=n;y0 = � 2nAn�n�1�1=(n�2) if n � 3:
Theorem 2.2. Assume that B > 0 or that n is odd.Let (x; y; z) be a solution of (2.1) with y > 0 rela-tively prime to C and with z = �1, and set

" = 8<: 1 if x� > 0,cos�2� b(n� 1)=2cn � if x� < 0.If n = 2 and AB � 4, or if n � 3 and y � y0, thereexists a solution t of (2.2) with 0 � t < C and suchthat u=y is a convergent of the continued-fractionexpansion of (t � "�)=C (assuming t � "� 6= 0),where u is de�ned by x = ty � Cu.Here the notation bwc represents the greatest inte-ger not exceeding w, so that ", in the case x� < 0,is simply the real part of the n-th root of unitynearest �1.
Proof. Let �k = �e2k�i=n, for 0 � k < n, and choosek0 such that���xy � �k0��� = min0�k<n���xy � �k���;then Re �k0 = "�. We haveYk 6=k0���xy � �k��� � 12n�1 Yk 6=k0����xy � �k0���+ ���xy � �k����

� 12n�1 Yk 6=k0 j�k0 � �kj = n�n�12n�1 :
At the same time,n�1Yk=0���xy � �k���= ����xy�n � �n��� = CAyn :Dividing by the previous inequality we get���xy � �k0���� 2n�1CAn�n�1yn ;

and therefore��� t� "�C � uy ��� = 1C ���xy � "���� � 1C ���xy � �k0���
� 2n�1an�n�1yn � 12y2 ;where the last inequality depends on the fact thatAB � 4 if n = 2 or y � y0 if n � 3. As in the proofof the preceding theorem, this implies that u=y isa convergent of (t� "�)=C. �

3. THE BASIC ALGORITHMWe now apply these ideas to create an algorithmthat tends to give good abc-examples. The basicidea is to use for a, b, c the three terms of (2.1),with A and jBj small and C a small multiple of aprime power, and hope to solve the equation withjzj = 1. The fact that all three terms are smallmultiples of a power then causes rad(ABC) to bemuch smaller than jABCj, and this tends to in-crease the ratios � and �.For simplicity, take �rst the case n even, B < 0.By Theorem 2.1, a solution of (2.1) with z = 1leads to a convergent of t=C, where t is a solutionof (2.2). Thus, by taking all the solutions t of (2.2)and examining the convergents of t=C, we will �ndthe solutions of (2.1) with z = 1 (if any exist).Formally, we have the following algorithm:
Algorithm 3.1. Given an even integer n � 2 andrelatively prime integers A > 0, B < 0, C > 0:� �nd all solutions of Atn � B mod C with 0 �t < C; for each solution t:� compute the convergents u=y of t=C; for eachsuch convergent:� set a0 = A(ty � Cu)n, b0 = �Byn, c0 = a0 +b0;� divide a0, b0 and c0 by their gcd;� set a = min(ja0j; jb0j; jc0j),c = max(ja0j; jb0j; jc0j), and b = c� a;� compute the ratios � and � using (1.1) and(1.3); record (a; b; c) if either ratio exceedsthe desired cuto�.



226 Experimental Mathematics, Vol. 2 (1993), No. 3

The procedure for n odd or B > 0 is similar, butis complicated by our not knowing in advance thevalue of " in Theorem 2.2. Thus we have to loopover its two possible values:
Algorithm 3.2. Given an integer n � 2 and relativelyprime integers A > 0, B, and C > 0, with n oddor B > 0:� set � = (B=A)1=n;� �nd all solutions of Atn � B mod C with 0 �t < C; for each solution t:� for " = 1 and " = cos�2� b(n� 1)=2cn �:� unless t� "� = 0:� compute the convergents u=y of (t�"�)=C,for y up to some �xed bound; for each suchconvergent, proceed as in the inner loop ofAlgorithm 3.1.The dominant step in these algorithms is the com-putation of the radical of abc, which involves thefactorization of large numbers.Note that there is no guarantee that a given abc-example will appear only once. It is of course de-sirable to minimize such redundancies. In the nexttwo sections, we prove two results that decreasethe amount of redundancy when n is even (Section4) or when c has a special form (Section 5).
4. SHORTCUT FOR n EVENFor n � 2 even, if t is a solution of (2.2), so isC � t. We now show that, for the purposes ofAlgorithms 3.1 and 3.2, we only need to examineone of the two values. In other words, the outerloop of the algorithms needs to be executed onlyfor 0 � t � 12C when n is even.Let t be a solution of (2.2) with 0 � t � 12C. IfB < 0 let � = t=C (case of Algorithm 3.1), and ifB > 0 set � = (t+"�)=C = (t� (B=A)1=n)=C (caseof Algorithm 3.2). Moreover, let � = � � [�].
Theorem 4.1. Let the notation be as above.
(i) If � 6= 0 and � � 12 , every abc-example arisingfrom a convergent of � also arises from a con-vergent of 1� �.

(ii) If � 6= 0 and � > 12 , every abc-example arisingfrom a convergent of 1 � � also arises from aconvergent of �.
Proof. Assume that � 6= 0, and let [a0; a1; : : :] bethe continued-fraction expansion of �. We havea0 = b�c and a1 = b1=�c. To show (i), assumethat � � 12 . Then a1 � 2 and1� � = [�a0; 1; a1 � 1; a2; a3; : : :]:Let ui=yi and u0i=y0i, for i = �2;�1; : : :, be theconvergents of the continued fraction expansion of� and 1� � respectively. Then, for all i � 1, u0i =yi�1 � ui�1 and y0i = yi�1. Let y = yi�1 and x =tyi�1 � Cui�1. Since n is even, we haveAxn�Byn =A(tyi�1�Cui�1)n�Byni�1=A((C� t)yi�1�C(yi�1�ui�1))n�Byni�1=A((C� t)y0i�Cu0i)n�By0ni :Hence, for i � 1, every convergent ui�1=yi�1 of �gives the same abc-example as the convergent u0i=y0iof 1� �. This completes the proof of (i).Part (ii) follows by replacing � with 1 � � andapplying (i). �
5. SHORTCUT FOR SPECIAL VALUES OF cAs remarked in the beginning of Section 3, it isreasonable to run the algorithm with C a primepower, because this makes radC small comparedwith C. In fact, it is even more e�cient to considerin sequence values of C of the form pe, for succes-sive values of e, for two reasons, the �rst being thatif the congruence Atn � B has already been solvedmod pe, it is very easy to solve it mod pe+1. Thesecond reason is given by Theorem 5.1 below: someconvergents can be ignored.For the sake of generality, the theorem will infact be stated for C = peC0, were C0 may begreater than one (and p is prime, gcd(C0; p) = 1,and e > 0.) We �x A > 0, B 6= 0, and n � 2, andvary only C.
Theorem 5.1. Let the notation be as above, and con-sider an abc-example obtained by an application of
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Algorithm 3.1 or 3.2 with C = peC0. If the conver-gent u=y from which it arises satis�es y � 0 mod p,the same example can be obtained by an applicationof the algorithm with C = pjC0 for some j < e.In other words, if we have already run the algo-rithm for C = pjC0, with j < e, we can ignore con-vergents whose denominators divide p when run-ning it for C = peC0.
Proof. Set Cj = pjC0 for 0 < j < e, so C = Ce.Suppose for concreteness that we are in the situa-tion of Algorithm 3.2 (the reasoning would in anycase apply without changes to Algorithm 3.1 if weset � = " = 0).By the theorem's assumptions, we have a solu-tion t of Atn � B mod Ce, a convergent u=y of(t � "�)=Ce, and integers x = ty � Cu 6= 0 and zsuch that Axn �Byn = zCe:Let q = (Atn � B)=Ce, and write y = pe0y0 withe0 > 0 and gcd(p; y0) = 1. ThenA(tpe0y0 � peC0u)n �B(pe0y0)n = peC0z; (5.1)so thatz = qpne0y0n+Au nXi=1 (�1)i�ni�p(n�i)e0+(i�1)e(ty0)n�i(uC0)i�1:Let j = e�min(e; e0) and k = e0 �min(e; e0). Di-viding (5.1) by pmin(ne;ne0), we getA(tpky0�pjC0u)n�B(pky0)n � 0 mod pjC0: (5.2)Write t as t = pjC0r+ t0, with 0 < t0 < pjC0. SinceAtn � B mod peC0, the same congruence holdsmod pjC0. Rewrite (5.2) asA(t0pky0�pjC0(u�rpky0))n�Bpky0n � 0 mod pjC0:
Since u=y is a convergent of t� "�peC0 , we have���t� "�peC0 � uy ��� < 1y2 ;

that is,���pjC0r + t0 � "�peC0 � upe0y0 ��� < 1(pe0y0)2 :Then���t0 � "�pjC0 � u� rpky0pky0 ��� < 1pe0+ky02 � 12y02 ;which implies that (u � rpky0)=(pky0) is a conver-gent of (t0 � "�)=(pjC0), concluding the proof. �
6. THE EXPERIMENTSWe have applied the algorithm in the followingcases.
(i) n = 2, 1 � a � jbj � 300 with b < 0, andc = pe, where p is a prime � 31 and e is suchthat pe � 260 [Nitaj 1992].
(ii) n = 2, 1 � a � b � 300, and c = pe, where p isa prime � 31 and e is such that pe � 240 [Nitaj1992].
(iii) n = 3; 5, 1 � a � b � 200, and c = pe, where pis a prime � 31 and e is such that pe � 240.We have found 103 examples with � � 3:8 and 86examples with � � 1:4. The left half of Table 1lists the examples that we believe were previouslyunknown and that have the largest �. The righthalf is similar, and lists the examples with largest�. We remark that in these runs we recovered allthe triples found by N. Elkies and J. Kanapka intheir recent tabulation of all abc-examples with c <232 and � � 1:2 [Elkies and Kanapka].See also the section on software availability atthe end of this article.
7. APPLICATION TO THE SZPIRO RATIOOur goal in this section is to �nd examples of ellip-tic curves for which the Szpiro ratio (1.2) exceedssigni�cantly the conjectural asymptotic value 6.To do this, we de�ne two families of elliptic curves.
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a b c � a b c �283 511 132 28 38 173 1:58076� 13 196 230 5 313 112 31 4:4190113 196 230 5 313 112 31 1:52700 321 72 116 199 2 138 17 4:20094239 58 173 210 374 1:50284� 216 41 71 315 72 197 4:0965522 11 32 1310 17 151 4423 59 1396 1:49243 312 56 79 312 29 115 571 4:0964773 213 77 9412 316 1033 127 1:49159 78 19 215 52 372 3 177 4:090801 316 7 23 11 23 533 1:47445 224 35 5 195 592 710 167 4:0711472 210 11 532 34 58 1:47414� 36 1573 283 2310 230 52 112 13 4:05990�34 199 118 23 57 73 1:47130� 213 313 113 13 29 436 673 520 17 4:0471032 52 24 173 314 710 257 1:45707 513 13 217 193 23 317 283 4:0449835 7 56 67 220 1:45134� 32 57 79 229 13 117 192 4:029431 33 53 77 23 213 114 13 41 1:45003 2 59 314 75 11 47 4:01342112 43 59 72 134 97 23 3 737 1:44798 210 1910 56 134 295 320 4425749 4:0029289 7 118 220 33 53 1:44774 53 114 312 317 72 225 241 4:0008732 57 79 229 13 117 192 1:44625 28 72 196 59 1132 193 3 239 3:997932 132 58 3 194 1:44506� 77 113 218 34 103 59 412 3:9912932 193 511 217 373 1:44328� 198 317 211 74 9049 3:97796313 2 17 415 3 57 75 1:44144 215 3 19 292 510 74 132 236 3:9745734 232 315 215 53 7 1:44097� 310 74 112 176 31 214 1033 3:968132 135 76 1732 313 472 1:43618 213 473 39 173 23 72 137 3:9655525 318 56 710 232 119 990203 1:43346 72 174 856897 241 32 1312 3:96025312 35 59 25 234 53 1:43304� 225 34 29 10753 74 1512 1814 524 3:95603221 76 17 82092 512 7432 1:43290 614 313 53 213 5 74 3:9543229 192 596 73 33 57 72 313 1:43109 313 19 7 534 210 174 3:95368193 2 56 192 11932 39 138 1:43042 219 3673 517 197 281 132 2516 3:9475039 29 76 432 224 13 1:42955 211 174 314 73 56 23 712 3:94732
TABLE 1. Previously unknown highest-� and highest-� examples obtained in the experiments described inSection 6. Those marked with an asterisk were found at the same time by Browkin and Brzezinski [1992]. Thetop example on the right has the highest � currently known.Let a and b be relatively prime integers. De�nean elliptic curve E over Q by

y2+(b2+ab�a2)xy+a2b3(b�a)y = x3+a2b(b�a)x2;
(7.1)The quantities c4 and � [Silverman 1986] arec4= (a2�ab+b2)�(a6�11a5b+30a4b2�15a3b3�10a2b4+5ab5+b6);�=a7b7(a�b)7(a3�8a2b+5ab2+b3):De�ne also the isogenous elliptic curve E0 over Q

y2 + a1xy + a3y = x3 + a2x2 + a4x+ a6; (7.2)

wherea1 = b2 + ab� a2; a2 = a2b(b� a); a3 = a2b3(b� a);a4 = 5ab(b� a)(a2 � ab+ b2)(a3 + 2a2b� 5ab2 + b3);a6 = ab(b� a)� (a9 + 9a8b� 37a7b2 + 70a6b3 � 132a5b4+ 211a4b5 � 182a3b6 + 76a2b7 � 18ab8 + b9):The quantities c04 and �0 arec04 = (a2 � ab+ b2)� (a6 + 229a5b+ 270a4b2� 1695a3b3 + 1430a2b4 � 235ab5 + b6);�0 = ab(a� b)(a3 � 8a2b+ 5ab2 + b3)7:
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a b �215 13 312 59 7:3624626 72 47 35 83 7:10618198 211 74 9049 6:80043384079 32 5 37 79 6:76452313 5 11 29 137 6:69128149 1423 52 43 113 6:6650011 32 6 61959
TABLE 2. Some curves E with equation (7.1) andhigh Szpiro ratio � > 6:6.The next result follows from [Silverman 1986],after some calculations:

Proposition 7.1. Let a and b be relatively prime in-tegers, and set g = gcd(�; c4). Then
g = gcd(a2 � ab+ b2; a3 � 8a2b+ 5ab2 + b3);

and, if g does not divide 7,
(i) the equations (7.1) and (7.2) are minimal;
(ii) the elliptic curves E and E0 are semistable;
(iii) the conductors of E and E0 are the radicals of� and �0.We return to the Szpiro ratio (1.2). We see thatthe product ab(a � b) appears in both � and �0.Hence, for every abc-example X + Y = Z, we canderive two elliptic curves E and E0 by setting a =Z and b = X in (7.1) and (7.2), and another twoby setting a = Z and b = Y .The examples so found for E with the highestSzpiro ratio are given in Table 2, and those for E0in Table 3.
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a b �11 32 8:75732487 2 35 7:4446024 19 283 7:3278054 25 17 7:20525172 229 292 7:16913215 13 312 59 7:138015 563 23 33 7 7:10156
TABLE 3. Some curves E0 with equation (7.2) andhigh Szpiro ratio � > 7.

SOFTWARE AVAILABILITYThe author will provide, upon request, a listing ofthe abc-examples known to him with � � 1:4 or� � 3:8.
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